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Abstract

This paperpresentstwo algorithmsbasedon the horizon-
tal and vertical patterndiscovery paradigmsthat find the
connectedsubgraphghat have asufiicient numberof edge-
disjoint embeddingsin a single large undirectedlabeled
sparsegraph. Thesealgorithmsusethreedifferentmethods
to determinghe numberof theedge-disjoinembeddingsf a
subgraptthatarebasedon approximateandexactmaximum
independensetcomputationsanduseit to prune infrequent
subgraphs. Experimentalevaluation on real datasetsrom
variousdomainsshav thatbothalgorithmsachieve goodper
formance,scalewell to sparsenput graphswith morethan
100,000verticesandaround200,000edgesandsignificantly
outperformpreviously developedalgorithms.

Keywords patterndiscovery, frequentsubgraphgraphmin-
ing.

1 Intr oduction

Datamining is the processof automaticallyextracting new
andusefulknowledgehiddenin largedatasetsThisemenging
disciplineis becomingincreasinglyimportantasadwancesn
datacollectionhave led to theexplosive growth in theamount
of availabledata.

In recentyears,there has beenan increasednterestin
developing datamining algorithmsthat operateon graphs.
Suchgraphsarise naturally in a numberof differentappli-

*This work wassupportedn partby NSFCCR-9972519EIA-9986042,
ACI-9982274,ACI-0133464,and ACI-0312828; the Digital Technology
Centerat the University of Minnesota;andby the Army High Performance
ComputingResearctCenter(AHPCRC) underthe auspicef the Depart-
ment of the Army, Army ResearchL_aboratory(ARL) under Cooperatie
AgreementnumberDAAD19-01-2-0014. The contentof which doesnot
necessarilyeflectthe positionor the policy of the government,and no of-
ficial endorsemenshouldbe inferred. Accessto researchand computing
facilitieswasprovided by the Digital TechnologyCenterandthe Minnesota
Supercomputindnstitute.

cationdomainsincluding network intrusion[47, 41], seman-
tic web[4], behaioral modeling[67, 55], VLSI reverseen-
gineering[70], link analysis[34, 40, 39,58], and chemical
compouncclassificatior{14, 43, 22,16]. Moreover, they can
beusedo effectively modelthestructuralandrelationalchar

acteristicsof a variety of datasetsrisingin otherareassuch
asphysical sciencege.g.,chemistry fluid dynamics,astron-
omy, structuraimechanicsandecosystenmodeling) life sci-

ences(e.g., genomics,proteomics,pharmacogenomicand
healthinformatics), and home-landdefense(e.g., informa-
tion assurancenetwork intrusion, infrastructureprotection,
andterrorist-threaprediction/identification).

The focusof this paperis on developingalgorithmsfor a
particulardatamining task,whichis thatof finding frequently
occurringpatternsin graphdatasets.Frequentpatternsplay
acritical role in mary datamining tasksasthey canbe used
amongotherto derive associationules[1], actascomposite
featuredfor classificationalgorithms[14, 56, 63, 51, 22, 50,
15], clusterthe (graph)transactiongl, 48, 35, 36, 4924],
and help in determiningthe similarity betweengraphs[54,
23,42,599,49, 13, 6066]. Within thecontext of graphsthe
mostwidely useddefinitionof a patternis thatof aconnected
subgraph[8, 68, 32, 29, 69, 3044] and is the definition
that we will usein this paper However, different pattern
definitionshave beenproposedaswell [32].

Therearetwo distinct problemformulationsfor frequent
patternmining in graphdatasetghat are referredto asthe
graph-transactionsetting and the single-geph setting In
the graph-transactiosetting,the input to the patternmining
algorithmis a setof relatively small graphs(calledtransac-
tions), whereasn the single-graphsettingthe input datais
a singlelarge graph. The diferenceaffectsthe way the fre-
queng of the variouspatternss determined.For the graph-
transactiorsetting, the frequeng of a patternis determined
by thenumberof graphtransactionshatthe patternoccursin,
irrespectve of how mary timesa patternoccursin a partic-



ular transactionwhereasn the single-graptsetting,the fre-
queng of apatternis basednthenumberof its occurrences
(i.e., embeddings)n the single graph. Due to the inherent
difference®f thecharacteristicef theunderlyingdataseand
theproblemformulation,algorithmsdevelopedfor thegraph-
transactionsettingcannotbe usedto solve the single-graph
setting,whereaghelatteralgorithmscanbeeasilyadaptedo
solve theformerproblem.

In recentyears,a numberof efficient and scalablealgo-
rithms have beendevelopedto find patternsin the graph-
transactionsetting[8, 68, 32, 29, 69, 3044]. Thesealgo-
rithms are completein the sensethatthey are guaranteedo
discover all frequentsubgraphsand were shavn to scaleto
very lage graphdatasets.However, developing algorithms
that are capableof finding patternsin the single-graphset-
ting hasreceved much less attention, despitethe fact that
this problemsettingis moregenericandapplicableto awider
range of datasetsand applicationdomainsthan the othetr
Moreover, existing algorithmsthatareguaranteedo find all
frequentpatterns [21,65] or algorithmsthat are heuristic,
suchas GBI [71] and SUBDUE [28] which tendto missa
large numberof frequentpatterns,are computationallyex-
pensve anddo not scaleto large datasets.

Developing algorithmsthat find the completeset of fre-
quent patternsin the single-graphsetting is the focus of
this paper We presenttwo computationallyefficient algo-
rithms that canfind subgraphsvhich are frequentlyembed-
dedwithin a large sparsegraph. The first algorithm, called
HSIGRAM, follows a horizontalapproad andfindsthe fre-
quentsubgraphn abreadth-firstashionwhereaghesecond
algorithm,calledv SIGRAM, follows averticalappmoad and
findsthefrequentsubgraph# adepth-firsfashion. Theseal-
gorithmsincorporateefficient algorithmsfor candidategen-
erationand frequeny countingthat allov themto scaleto
graphscontaining over 100,000 verticesand find patterns
with relatively low occurrencefrequeng. Our experimen-
tal evaluationon six real graphsshaws thatboth HSIGRAM
andvSIGRAM achieve reasonablygoodperformancescale
to large graphs,and substantiallyoutperformpreviously de-
velopedapproachefor solvingsimilar or simplerversionsof
theproblem.

Therestof thispapelis organizedasfollows. Section2 de-
finesthegraphmodelthatwe use reviews somegraph-related
definitions,andintroduceghe notationthatis usedin the pa-
per. Section3 suneys relatedresearchn this area.Section4
formally definesthe problemof frequentsubgraphdiscorery
anddiscusseshe challengesassociatedvith finding themin
acomputationallyefficientmanner Sections describesn de-
tail the HSIGRAM andvSIGRAM algorithmsthatwe devel-
opedfor solvingthe problemof frequentsubgraptdiscovery
from asinglelargesparseyraph.Section6 providesadetailed
experimentakvaluationof theHSIGRAM andv SIGRAM al-
gorithms on ariousreal dataset@andcompareshemagainst
existing algorithms. Finally, Section7 provides somecon-
cludingremarks.

2 Definitions and Notation

A graph G = (V, E) is madeof two sets the setof vertices
V andthe setof edgesE. Eachedgeitself is a pair of
vertices,andthroughouthis paperwe assumehatthe graph
is undirectedj.e., eachedgeis anunorderedair of vertices.
Furthermorewe will assumehatthe graphis labeled That
is, eachvertex andedgehasa label associatedvith it thatis
dravn from a predefined setf vertex labels(Ly) andedge
labels(L g). Eachvertex (or edge)of thegraphis notrequired
to have auniquelabelandthe samelabel canbe assignedo
mary vertices(or edges)n thesamegraph.If all thevertices
andedgesof the graphhave the samevertex andedgelabel
assignedo them,we will call this graphunlabeled

GivenagraphG = (V, E), agraphGs = (Vs, Eg) isa
subgaphof G if andonlyif Vs € V andEg C E. A graphis
connectedif thereis a pathbetweenrevery pair of verticesin
thegraph.Two graphsG; = (V1, E1) andGy = (Vo, E) are
isomorphic if they aretopologicallyidenticalto eachothet
thatis, thereis a mappingfrom V; to V, suchthateachedge
in E; is mappedto a single edgein E, andvice versa. In
the caseof labeledgraphs,this mappingmustalsopresere
the labelson the verticesand edges. An automorphism is
anisomorphisnmappingwhereG; = Gy. Giventwo graphs
G1 = (V1, Ep) andGz = (V», E»), theproblemof subgraph
isomorphism is to find anisomorphismbetweenG, anda
subgraptof Gy, i.e.,determinewvhetheror not G is included
in G;.

Given a subgraphGs anda graphg, two embeddingof
Gs in G arecalledidentical if they usethe samesetof edges
of G, andthey are called edge-disjointif they do not have
ary edgesof G in common. Given a setof all embeddings
of a particularsubgraphGs in agraphg, the overlap graph
of Gs is a graphobtainedby creatinga vertex for eachnon-
identical embeddingand creatingan edgefor eachpair of
non-edge-disjoinembeddings. An example of a subgraph
andits overlapgraphareshavn in Figure2.

Thenotationthatwe will be usingthroughouthe paperis
shavn in Tablel.

2.1 Canonical Labeling

One of the key operationsrequired by ary frequentsub-
graphdiscovery algorithmis amechanisnby which to check
whethertwo subgraphsreidenticalor not. Oneway of per
forming this checkis to performa graphisomorphismop-
eration. However, in casesin which mary suchchecksare
requiredamongthe sameset of subgraphsa betterway of
performingthis taskis to assignto eachgrapha uniquecode
(i.e., a sequencef bits, a string, or a sequencef numbers)
thatis invarianton the orderingof the verticesand edgesin
the graph. Sucha codeis referredto asthe canonical label
of agraphG = (V, E) [61, 18], andwe will denoteit by
cl(G). By usingcanonicallabels,we cancheckwhetheror
nottwo graphsareidenticalby checkingto seewhetherthey
have identicalcanonicallabels. Moreover, by comparingthe
canonicallabelswe canobtaina completeorderingof a set
of graphsn auniqueanddeterministiovay, regardlesof the



Tablel: Notationusedthroughouthe paper

Notation Description

k-subgraph A connectedsubgraphwith k edges
(alsowritten asa sizek subgraph)

GK, Hk Graphsof sizek

E(G) Edgesof agraphG

V(G) Verticesof agraphG

cl(G) Canonicalabelof agraphG

dia(G) Diameterof agraphG

a,b,ce f Edges

u, v Vertices

d(v) Degreeof avertex v

I(v) Labelof avertex v

I(e) Labelof anedgee

H=G-e H is agraphobtainedby the deletionof
edgee € E(G)

g Inputgraph

Gi G’'sconnecteccomponent

S(Gk+Ly Setof all connectessizek subgraphef Gk+1

M(G) = {m;j} | All embedding®fasubgraphsin G

AG) ={g} All anchoredgesof asubgraphG in G

C Candidatesubgraph

ck Setof candidatesvith k edges

C Setof all candidates

F Frequensubgraph

FK Setof frequentk-subgraphs

F Setof all frequentsubgraphs

k* Sizeof thelargestfrequentsubgraphin G

Le Setof all edgelabelsin G

Ly Setof all vertex labelsin G

original vertex andedgeordering.

A simpleway of definingthe canonicalabelof a graphis
asthe string obtainedby concatenatinghe uppertriangular
entriesof the graphs adjaceng matrix whenthis matrix has
beensymmetricallypermutedsothatthis stringbecomeghe
lexicographicallylargest (or smallest)over the strings that
canbeobtained fromall suchpermutationsThisis illustrated
in Figure 1 thatshows a graphG2 andthe permutatiorof its
adjaceny matrix!' thatleadsto its canonicalabel“aaazyx”.
In thiscode,"aaa’ wasobtainedby concatenatinghevertex-
labelsin the orderthat they appearin the adjaceng matrix
and “zyx” was obtainedby concatenatinghe columns of
the upper triangular portion of the matrix. Note thatary
other permutationof G%'s adjacenyg matrix will leadto a
codethatis lexicographicallysmaller(or equal)to “aaazyx”.
If a graphhas|V| vertices,the compleity of determining
its canonicallabel using this schemes in O(]V|!) making
it impractical even for moderatesize graphs. Note that
the problemof determiningthe canonicallabel of a graph
is equivalentto determiningisomorphismbetweengraphs,
becauséf two graphsareisomorphicwith eachother their
canonicallabelsmustbe identical. Both canonicallabeling
and determininggraph isomorphismare not knavn to be
eitherin P orin NP-completd18].

In practice the compleity of finding a canonicalabeling
of a graph can be reducedby using various heuristicsto
narrav downthesearchspaceor by usingalternatecanonical
labeldefinitionsthattake advantageof specialpropertieshat
may exist in a particularsetof graphg[53, 52, 18]. As part
of our earlier researchwe have developedsuch canonical
labelingalgorithmthat fully makesuseof edge-andvertex-

IThe symbol v; in the figure is a vertex ID, not a vertex label, and

blank elementdn the adjaceng matrix meanghereis no edgebetweerthe
correspondingpair of vertices.

vo v1 V2 vl vo V2

a a a a a a
v a z X v) a zy
vpalz y| walz X
vpa|x y vpaly x

code= aaazxy
@a3 (b) ©

code= aaazyx

Figurel: Simpleexamplesof codesandcanonicaldjacenyg
matrices

labels for fast processingand various vertex invariantsto

reducethe complity of determiningthe canonicallabel of

agraph[45, 46]. Our algorithm cancomputethe canonical
labelof graphscontainingupto 50 verticesextremelyfastand
will bethealgorithmusedto computethe canonicalabelsof

thedifferentsubgraphén this paper

2.2 Maximum IndependentSet

As discussedater in Section4, our frequentsubgraphdis-
coveryalgorithmfocusesonfinding subgraphsvhoseembed-
dingsareedge-disjointA critical stepin obtainingthis setof
edge-disjoinembeddingdor a particularsubgraphs to find
the maximumindependensetof its overlapgraph. Givena
graphG = (V, E), asubsefof vertices| c V is calledin-
dependentif no two \erticesin | areconnectedy anedge
in E. An independenset| is calledmaximal independent
setfor every vertex v in | if thereis anedgein E thatcon-
nectsv to avertex in V \ |. A maximalindependenstet |
is calledmaximum independentset (MIS) if | containsas
mary verticesof V aspossible.

The problemof finding the MIS of a graphwas among
thefirst problemsprovedto bein NP-completg19], andre-
mainsso even for boundeddegreegraphs. Moreover, it has
beenshavn thatthesizeof MIS cannotbeapproximateaven
within a factorof n1=°® in polynomialtime [17]. However,
theimportanceof the problemandits applicabilityto awide-
rangeof domainshasattracteda considerablemountof re-
search. This researchhasbeenfocusedon developing both
fasterexact algorithmsas well as approximatealgorithms.
The fasterexact algorithmto dateis the algorithmby Rob-
son [62] that solves the MIS problemin time O(1.211"),
making it possibleto solve in reasonableamountof time
probleminstancesontainingup to around100 vertices. In
this study we useda fastimplementatiorof the exact max-
imum clique (MC) problemsolver wclique [57] insteadof
thosefastexact MIS algorithms. Becausehe MIS problem
onagraphG is equivalentto the MC problemona G’s com-
plementgraphG, we canusewclique asafastexactMIS al-
gorithm (EMIS). Heuristicalgorithmsfocuson finding max-
imal independensetswhosesizeis boundedn termsof the
size of the optimal solution,anda numberof suchmethods
have beendeveloped[27, 6, 38, 25].

One of the most widely used heuristic is the greedy
algorithm (GMIS) which selectsa vertex of the minimum
dagree, deletesthat vertex and all of its neighborsfrom
the graph,andrepeatshis processuntil the graphbecomes
empty A recentdetailedanalysisof the GMIS algorithmhas



shavnthatit produceseasonablgoodapproximation®f the
MIS for bounded-andlow-degreegraphg25]. In particular
for a graph G with a maximumdegree A and an average
degreed, thesize|l | of the MIS satisfieghefollowing:

A+2
3

1) |1 < min< IGMIS(G)], d—;r2|GM|S(G)|>

where|GMIS(G)| is the sizeof the approximateMIS found
by the GMIS algorithm.

3 RelatedWork

Thepreviousresearclonfinding frequentsubgraphén graph
datasetdalls undertwo cateyories. The first category con-
tains algorithmsfor finding subgraphghat occur multiple
timesin asingleinputgraph[71, 28, 21,65] andaredirectly
relatedto the algorithmspresentedn this paper whereaghe
secondcateyory containsalgorithmsthatfind subgraphshat
occurfrequentlyacrossa databasef small graphs[14, 31,
43, 45, 338, 68, 32, 29, 3044]. Betweenthesetwo classes
of algorithms,thosedevelopedfor the latter problemarein
generalmore matureas they have moderatecomputational
requirementsindscaleto large datasets.

In the restof this section,we will describeon the related
researcHor thesingle-graptsettingasit is directly relatedto
thetopic of the paper

Themostwell-known algorithmfor finding recurringsub-
graphsin a singlelarge graphis the SUBDUE system orig-
inally developedin 1994, andimproved over the years[28,
10, 12,11]. SUBDUE is an approximatealgorithm and
finds patternsthat can compresghe original input graphby
substitutingthose patternswith a single vertex. In evalu-
ating the extent to which a particularpatterncan compress
the original graphit usesthe minimum descriptionlength
(MDL) principle, and emplgys a heuristic beam searchto
narrav the search-spaceTheseapproximationgmprove its
computationakfficiengy but at the sametime it preventsit
from finding subgraphghat are indeedfrequent. GBI [71]
is anothergreedyheuristicsbasedalgorithmsimilar to SUB-
DUE. GhazizadelandChawathe [21]developedanalgorithm
calledSEuSthat uses datastructurecalledsummaryto con-
structa lossy compressedepresentatiomf the input graph.
This summaryis obtainedby collapsingtogetherall the ver
ticesof the input graphthat have the samelabel andis used
to quickly prune infrequentandidates.As the authorsin-
dicate,this summarydata-structures usefulonly whenthe
input graph containsa relatively small numberof frequent
subgraphswith high frequeng, andis not effective if there
arealargenumberof frequentsubgraphsvith low frequeng.
Finally, Vanetik, Gudesand Shimory [65] presentedan al-
gorithmfor finding all frequentlyoccurringsubgraphdgrom
a single labeledundirectedgraphusing the maximumnum-
ber of edge-disjoinembedding®f a graphasa measureof
its frequeny. Eachsubgraphs representedtby its minimum
numberof edge-disjoinpaths(pathnumbej, andusealevel-
by-level approachto grow the patternsbasedon their path-
number Their emphasiss on efficient candidategeneration

X

(b) Size-7subgraptG’

@&

(a) Size-12graphg (c) Size-6subgraphG®

Figure3: Patternswith the non-monotonidrequeny

andno specialattentionis paidfor frequeng counting.

4 Discovering Frequent Patterns in a Single Graph:
Problem Definition

A fundamentalssuethatneedso be consideredy ary fre-
guentsubgraptdiscovery problemformulationsimilar to the
single-graptsettingis the countingmethodof theoccurrence
frequeng. In generaltherearetwo possiblemethodsof the
frequeng counting. Accordingto the first method,two em-
beddingsof a subgraphare consideredifferent,aslong as
they differ by atleastoneedge(i.e., non-identical).As are-
sult, arbitrary overlapsof embedding®f the same subgraph
areallowed. On the otherhand,by the secondmethod,two
embeddingareconsideredlifferent,only if they donotshare
edges(i.e., they are edge-disjoint). Thesetwo methodsare
illustratedin Figure?2. In this example,therearethreepos-
sible embeddingsof the subgraphshavn in Figure 2(1) in
the input graph of Figure 2(2). Two of theseembeddings
(Figures2(3) and (5)) do not shareary edgeswhereasthe
third embedding(Figure 2(4)) sharesedgeswith the other
two. Thus,if we allow overlaps,the frequeng of the sub-
graphis 3, andif we donotit is 2.

Thesetwo ways of countingthe frequeng of a subgraph
leadto problemswith dramaticallydifferentcharacteristics.
If we allow arbitraryoverlapsbetweemon-identicalembed-
dings, thenthe resultingfrequeng is not ary longerdown-
wardclosed(i.e.,thefrequeny of asubgraph doesotmono-
tonically decreaseas a function of its length). This is il-
lustratedin Figure 3. Both G’ and G® are subgraphsof
G. Although the smaller subgraphG® hasonly one non-
identicalembeddingthelargerG’ hassix non-identicalem-
beddingsOntheotherhand,if wedeterminghefrequeng of
eachsubgraphby countingthe maximumnumberof its edge-
disjoint embeddingsthen the resultingfrequeng is down-
wardclosed[65].

Being able to take advantageof a frequeny counting
methodthatis dowvnward closedis essentiafor the compu-
tationaltractability of mostfrequentpatterndiscovery algo-
rithms. For this reasonpur problemformulationsusesedge-
disjointembeddingsGiventhis, oneway of formulatingthe
frequentsubgrapldiscovery problemfor thesingle-graplset-
ting asfollows [65]:

Definition 1 (Exact Discovery Problem) Given an input
graph G which is undirectedand labeled,and a parameter
f, find all connectedindirectedlabeledsubgaphsthat have
atleast f edge-disjointembedding#n G.

Unfortunatelyquite oftenthis problemcanbeintractable By
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this definition,in orderto determindf a subgraphs frequent
or not, we needto find whetherthe overlapgraphof its non-
identicalembedding€ontainanindependensetwhosesize
isatleastf. Whenasubgraplhs relatively frequenicompared
to the frequeng threshold f, by using approximateMIS
algorithmswe canquickly tell thatsuchasubgraphs actually
frequent. However, in the casesin which the approximate
MIS algorithmdoesnot find a sufiiciently largeindependent
set,theexactMIS needgo becomputedbeforea patternwill
be keptor discarded.Dependingon the resultingsize of the
maximum independenset, the subgraphwill be identified
asfrequentor infrequent. Also, if we neednot only to find
frequentsubgraphsput also to find their exact frequeng,
thentheexactMIS needgo becomputedntheoverlapgraph
of every pattern. In both casesbecausesolving the exact
MIS problemis in NP-completgseeSection2.2), the abore
definitionof thefrequentsubgraphdiscovery problemcannot
betractable gvenfor arelatively simpleinputgraph.

To make the problem more practical, we proposetwo
alternatve formulations that can find frequent subgraphs
without solvingthe exactMIS problem.

Definition 2 (Approximate Discovery Problem) Given an
input graph G which is undirectedand labeled, and a pa-
rameterf, find connectedindirectedlabeledsubgaphsthat
haveat least f edge-disjointembeddingsn G as mud as
possible

Definition 3 (Upper Bound Discovery Problem) Given an
input graph G which is undirectedand labeled, and a pa-
rameter f, find all connectedundirectedlabeledsubgaphs
sud that an upperboundon the numberof its edge-disjoint
embeddingss abovethethresholdf.

Essentiallythe solutions for thosetwo problemsbecome
a subsetand a supersetof the solution for Definition 1,

respectrely. Thefirst formulation, Definition 2, which asks
for a subsetof the solutionof Definition 1, requiresthatthe

embedding®f eachsubgrapHorm anoverlapgraphthathas
an appoximateMIS whosesize is greaterthan or equalto

f. The secondformulation, Definition 3, which asksfor

a supersebf the solution of Definition 1, requiresthat an

upper boundon the size of the exact MIS of this overlap

graphis greaterthanor equalto f. Note thatasdiscussed
in Section2.2, suchupperboundscanbe easily obtainedfor

both the GMIS algorithm aswell asfor otherapproximate
algorithms.

5 Algorithms for Finding Frequent Subgraphs in a
LargeGraph

We developedtwo algorithms,calledHSIGRAM 2 andv Si-
GRAM, which find all frequentsubgraphsccordingto Def-
initions 1-3 describedn Section4. In both algorithms,the
frequentpatternsare conceptuallyorganizedin a form of a
latticethatis referredto asthe lattice of frequentsubgaphs
The kth level of this lattice containsall frequentsubgraphs
with k edges(i.e., sizek subgraphs)anda nodeat level k
representing subgraphGK is connectedo at mostk nodes
at level k — 1, eachcorrespondingo a distinct (i.e., non-
isomorphic)connectedize(k — 1) subgraptof GX. Thegoal
of bothHSIGRAM andvSIGRAM is to identify the various
nodesof this lattice andthe frequeng of the associatedub-
graphs.

The differencebetweerthe two algorithmsis the method
they useto discover (i.e., generatefhe nodesof the lattice.
HSIGRAM follows a horizontalapproachand discoversthe
nodesin a breadth-firsfashion,whereas/SIGRAM follows
a vertical approachand discoversthe nodesin a depth-first
fashion. Both horizontaland vertical approachefave been
previously usedto find frequent subgraphsin the graph-
transactionsetting [33, 44, 68, 8] and have their origins
on algorithmsdevelopedfor finding frequentitemsetsand
sequencep?, 3,26,72].

A detaileddescriptionof HSIGRAM and VSIGRAM is
providedin therestof this section.

5.1 Horizontal Algorithm: HSIGRAM

Thegeneralktructureof HSIGRAM is shown in Algorithm 1
(the notationusedin the pseudo-codés shavn in Table1).
HSIGRAM takes asinput the graph G, the minimum fre-
quengy threshold f, andthe parameteMIS_type that spec-
ifies the particularproblemdefinition (as discussedn Sec-
tion 4). It startsby enumeratingall frequentsingle- and
double-edgsubgraphén G, andthenentersits maincompu-
tationalloop (Lines 7—10).During eachiteration,HSIGRAM
first generatesll candidatesubgraph®f sizek + 1 by joining
pairsof sizek frequentsubgraphgLine 8) andthencomputes
their frequeng (HSIGRAM-COUNT in Line 11). The candi-
datesubgraphsvhosefrequeng is lower thanthe minimum
thresholdf arediscardecandtheremainingarekeptfor the
next level of thealgorithm. Thecomputatiorterminatesvhen
nofrequentsubgraphsregeneratediuringa particularitera-
tion.

Thetwo key component®f theHSIGRAM algorithmthat
significantly affect its overall computationacompleity are

2siGraMstandsor Single Grgph Miner.



Algorithm 1 HSIGRAM(G, MIS_type f)

. > fistheminimumfrequeng threshold.

. > MIS_typeis eitherapproximateexactor upperbound.
F <0

: F1 < all frequentsize-1subgraphsn G

D F2 —all frequentsize-2subgraphsn G

k <2

- while 7K # ¢ do

cktl — HSIGRAM-GEN(FX1 FK 1)
FHl g

10:  for eachcandidateC in ck+1 do

11: C.freq < HSIGRAM-COUNT(C, MIS_type
12: if C.freq> f then

13: addC to Fk+1

14: F < FuFktl

15: k< k+1

16: return F

©

the methodsusedto perform candidategenerationand to
computethe frequeng of the candidatesubgraphs.In the
restof this sectionwe provide additionaldetailson hav these
operationsare performedanddescribevariousoptimizations
thataredesignedo reducetheir runtime.

5.1.1 Candidate Generation

HSIGRAM generatesandidatesubgraphof sizek + 1 by
joining two frequentsizek subgraphsin orderfor two such
frequentsizek subgraphso beeligible for joining eachof the
two mustcontainthe samesize{k — 1) connectedubgraph.
The simplestway to generatehe completesetof candidate
subgraphss to join all pairs of sizek frequentsubgraphs
that have acommonsize{k — 1) subgraph.Unfortunately
the problemwith this approachis that a particular sizek
subgraphmay have up to k differentsize{k — 1) subgraphs
and as a result, if we considerall such possiblesubgraphs
and perform the resulting join operations,we will end up
generatingthe samecandidatepatternmultiple times, and
generatinga large number of candidatepatternsthat are
not downward closed. Such an algorithm would spenda
significantamountof time identifying uniquecandidatesnd
eliminatingnon-davnward closedcandidategboth of which
operationsare non-trivial asthey requireto determinethe
canonicalabelof thegeneratedubgraphs).

HSIGRAM addressebothof theseproblemsby onlyjoin-
ing two frequentsubgraph# andonly if they shareacertain,
properlyselectedsize{k — 1) subgraphAlgorithm 2 shavs
thepseudo-codér thecandidateyenerationwheretheprop-
erly selecteasize{k — 1) subgraphs denotedcoy F. For each
frequentsizek subgraphF;, let P(F) = {H; 1, Hi 2} bethe
two size{k — 1) connectedubgraphsf F suchthatH; 1 has
thesmallestcanonicalabeland H; » hasthe secondsmallest
canonicalabelamongthevariousconnectedize{k—1) sub-
graphsof F;. We will referto thesesubgraphssthe primary
subgaphsof F;. Note thatif every size{k — 1) subgraptof
F isisomorphicto eachother H; 1 = Hj 2 and|P(F)| = 1.
HSIGRAM will only join two frequentsubgraphss andF;,
if andonly if P(F) N P(Fj) # ¥, andthe join operation
will be donewith respectto the commonsize{k — 1) sub-
graph(s).Theproofthatthis approactwill correctlygenerate

Algorithm 2 HSIGRAM-GEN(F*—1, 7K f)

1:ckH g

2: for eachF in 7%~1do

3:  for eachpair Fj, Fj in F.childrendo

4: C <« join Fj andF; basecn F

5: > testif thedownward closurepropertyholds.
6: S(C) « all connectedsizek subgraphsf C
7:
8

P(C) « two primarysubgraph®f sizek

: skip < false

9: for eachSin S(C) do
10: if Sfreq< f then
11: skip < true
12: break
13: if skip # true then
14: addC to ck+1
15: > P(C) = {Hq, Ho}
16: addC to H.childrenandto Ho.children

17: return ck+1

Algorithm 3 HSIGRAM-COUNT(CK*+L, MIS._type

1. (M(C*+Y), Ack+l)) < HSIGRAM-EMBED(C, G)
2: G < build anoverlapgraphfrom A (Ck+1)

3: {G1,Go, ..., Gm} « decompos&

4: fmis < 0

5: for eachG;j in {Gq, Gy, ..., Gm} do

6

7

8

if Gj is easyto handlethen
fmis < fmis + [EMIS(G))|
elseif MIS_type= approximatehen

9 fmis < fmis + IGMIS(G;)|
10: elseif MIS_type= exactthen
11 fmis < fmis + IEMIS(G))|
12: elseif MIS_type= upperboundthen
13: fmis < fmis + IGMIS(G))| min((A + 2)/3, (d + 2)/2)

14: > S(CKTL) is asetof all connectedsizek subgraphsgn Ck+1
15: fp < thelowestfrequeny amongS(Ck+1)
16: return min( fys, fp)

all valid candidatesubgraphss presentedh [44]. Thiscandi-
dategeneratiorapproachdramaticallyreduceghe numberof
redundanaindnon-davnward closedpatternghataregener
atedandleadsto significantperformanceémprovementsover
the nave approach45].

5.1.2 FrequencyCounting

HSIGRAM-COUNT in Algorithm 3 computeghe frequeng
of acandidatesubgraptC by firstidentifyingall of its embed-
dings, constructingthe overlap graph of theseembeddings,
andthen, basedon the MIS_type parameterfinding an ap-
proximateor exact MIS of this overlap graph. The outline
of this processs shavn in Algorithms 4 and 3. In therest
of this sectionwe first describehow the variousembeddings
areidentifiedfollowedby a descriptionof the methodusedto
efficiently computethe desiredmaximalindependensgets.

Embedding Identification In orderto identify all the em-
beddingof a candidateC, HSIGRAM-EMBED shavn in Al-

gorithm 4 needsto solve the subgraphisomorphismprob-
lem. Performingthe subgraphisomorphismfor every can-
didate from scratchmay be expensve, especiallywhen an
input graphis large. HSIGRAM-EMBED reducesghis com-
putationalrequirementy using anchor edges An anchor
edgeis a partial embeddingof a candidateC andworks as



Algorithm 4 HSIGRAM-EMBED(C, G)

. > A: asetof all anchoredgesf C

. A < intersectiorof anchoredgesacrossS(C)
. > collectall unigueembedding®f C into M
M <0

: for eachanchoredgeein A do

Me <« all embedding®f C thatincludestheedgee
M <~ MU Me

: > collectall uniqgueanchoredgesf C into A
TA <P

10: for eachembeddingnin M do

11: e <« chooseoneedgefrom m arbitrarily
12: addeto A

13: return (M, A)

©

a constraintof the subgraphisomorphismproblemin which
narravs downthe searchspaceonly aroundtheanchoredge.

More specifically HSIGRAM-EMBED createsand uses
anchor edgesas follows. First, the list of anchoredges
are createdright after frequenyg countingfor size{k — 1)
frequentsubgraphby convertingthe list of its non-identical
embeddings.Theseedgeswill be usedlater for countinga
candidateof sizek. Let F denotea frequentsubgraphof
sizek — 1 andsupposer hasN non-identicalembeddings
in total. After thefrequeng counting,F; hasalist of all its
embeddingsM(F) = {my, ..., my}. An anchoredgee of
anembeddingm; of F isanedgein E(G) thatis alsoa partof
m;. For every mj, HSIGRAM-EMBED arbitrarily choosesan
edgeandaddsit to A(F;) (Line 11in Algorithm 4). Because
of overlappecembeddingssomeembeddingsnayleadto the
sameanchoredge.

Now, in the next iteration, supposea k-candidateC con-
tains a frequent (k — 1)-subgraphF;. Becausethere are
k edgesin E(C), C may have up to k distinct such fre-
guentsubgraphof sizek — 1, and eachF holds the an-
choredgelist. Beforestartingthe frequeng countingof C,
first HSIGRAM-EMBED selectsone of F; whosefrequeng
is thelowestamong{F;}. For eache, € A(F), HSIGRAM-
EMBED checksif thereis anedgeen € A(F;) forall j # i
suchthatthe shortespathlengthbetweere, andey,, denoted
by d, is within the diametepf C, denotedby dia(C). If there
is suchan edgeen, from every A(Fj) for j # i, e, maybe
apartof anembeddingf C, becauseéf C is afrequentsub-
graphof sizek, theremustbe a setof frequentsubgraphof
sizek — 1 insidethe sameembeddingf C. To computethe
exactpathlengthbetweeredgese, anden, in G requiresall
pairsshortespaths whichmaybecomputationallyexpensve
when|E(G;)| islarge. HSIGRAM-EMBED boundshislength
d by thedifferencebetweerntwo lengths,|dy, — dm|, whered,
anddy, arethe shortestpathlengthsfrom an arbitrarily cho-
senvertex v € V(Gi) to e, andey, respectiely. If e, andeny
arein the sameembeddingof C;, alwaysd < dia(C) holds
anddn < dn+d. Thus,if |d, —dm| < dia(C) istrue,thene,
andey may belongto the sameembeddingf C , otherwise
e, andey cannotbe in the sameembeddingseeFigure4).
If e, cannotfind suchen, from every A(Fj) for j # i, enis
removedfrom A(F;) (Line 2). Becausehe subgraphisomor
phismwill be performedfor eache,, this pruningprocedure
caneffectively reducetherun-time.

dia(G)

Figure4: Distanceestimationbetweertwo edges

Finally, afterremoving unnecessargnchoredgesfor each
of theremaininganchoredgesall thesubgraplisomorphisms
of C arerepeatedlyidentifiedandthe setof embeddings\t
is built (Line 6).

Computing the Frequency Thefrequeng of eachsubgraph
Ck+1is computedy theHSIGRAM-COUNT functionshavn
in Algorithm 3. In particular HSIGRAM-COUNT computes
two different frequencies. The first, denotedby fys, is
computedbasedon the size of the MIS of the overlapgraph
createdrom the embedding®f C¥+1. The seconddenoted
by fp, is the leastfrequeny of all the connectedsizek
subgraphsof CK*1 (Line 15), which representsan upper
boundon Ck*1's frequeny derived entirely from the lattice
of frequentsubgraphsln thecasen which fy,s is computed
using Definition 3, the frequeng bound provided by fp
may actuallybe tighter, andthusmay leadto moreeffective
pruning. For this reason,the overall frequeny of Ck+1 is
obtainedby takingthe minimumof fys and fp.

The frequengy fys is computedas follows (Lines 2—
13). Givena patternandall of its non-identicalembeddings,
HSIGRAM-COUNT generatests overlap graph G. Then,
HSIGRAM-COUNT decomposes$s into its connecteccom-
ponentsGs, Go, ..., Gy (M > 1). Next, for eachconnected
componeng;, it checksthe maximumdegreeof its vertices
andif it is less thabr equalto two (a cycle or a path),it com-
putesits maximumindependensetdirectly by the EMIS al-
gorithmbecausdt is trivial to computetheexactMIS for this
classof graphs(Line 7). If the maximumdegreeis greater
than two, HSIGRAM-COUNT useseither the resultof the
GMIS algorithm (Line 9), the resultof the EMIS algorithm
(Line 11), or the upperboundon the size of the exact MIS
(Equation2.1). The summationof thoseMIS sizesfor the
componentss thefinal valueof fys. Note thatthe decom-
positionof the overlapgraphinto its connecteccomponents
allow us to take advantageof the propertiesof the special
graphsandalsoobtaintighter boundsfor eachcomponengs
themaximumdegreefor someof themwill belowerthanthe
maximumdegreeof the entireoverlapgraph.

In addition, every edgeis markedif it is includedin ary
embeddingof a frequentsubgraph. Unmarled edgesare
removedbeforeproceedingo the next iteration.

5.2 Vertical Algorithm: vSIGRAM

The mostcomputationallyexpensve stepin the HSIGRAM
algorithm is frequeng counting as it needsto repeatedly
perform subgraphisomorphismcomputations. The overall
time can be greatly reducedif insteadof storing only the
anchoredgesve storethe completesetof embeddingscross



successie levels of the algorithm. Becauseof HSIGRAM's
level-by-level structure, these complete embeddingsneed
to be storedfor the entire set of frequentand candidate
patternsof eachsuccessie pair of levels. This substantially
increaseshe memoryrequirement®f this approachmaking
it impracticalfor themostof interestingdatasetsOntheother
hand,within the contet of a vertical algorithm, storingthe
completesetof embeddingss feasiblesincewe needto do
that only for the subgraphsalongthe path fromthe current
nodeto theroot. Thus,a vertical algorithmhaspotentiallya
computationabhdwantageover a horizontalalgorithm,which
motivatedthe developmentof vSIGRAM.

However, beforedevelopingefficient algorithmsthatgen-
eratethelattice of frequentsubgraphsn a depth-firstfashion
two critical stepsneedto be addressedThe first stepis the
methodthatis usedto ensurethat the samenodeof the lat-
tice andthe depth-firstsubtreerootedat that nodeshouldnot
be discoreredand explored multiple times. This is impor
tantbecausesachnodeat level k will be connectedo up to
k differentnodesat level (k — 1). As aresult,if thereareno
mechanism®y which to prevent therepeatedyeneratiorof
the samenode,a depth-firstalgorithmwill end-upperform-
ing redundantomputationgi.e., generatinghe samenodes
multiple times),adwerselyimpactingthe overall performance
of thealgorithm.vSIGRAM eliminatesheseredundantom-
putationshy assigningeachnodeat level k (correspondingo
asubgraphFK) to auniqueparentodeat level k — 1 (corre-
spondingto asubgraphFk—1, suchthatonly F¥~1 is allowed
to createFK. The subgraphFX—1 is called the geneating
parentof FX. Detailson haw this is achieredis providedin
Section5.2.1.

Thesecondstepis themethodthatis usedto createsucces-
sornodesin the courseof the traversal. In the caseof HSI-
GRAM, this correspondgo the candidategeneratiorphase,
andis performedoy joining thefrequentsubgraphsf thepre-
viouslevel. However, sincethelatticeis exploredin adepth-
first fashion,suchjoining-basedapproachwill not work, as
the algorithmmay nothave yet discoveredthe requiredfre-
gquentsubgraphsTo addresshis problem,vSIGRAM creates
the successonodes(i.e., extendedsubgraphspy analyzing
all theembedding®f the currentsubgraphF X, andidentify-
ing the distinctone-edgextensiondo theseembeddingshat
are sufficiently frequent. The frequentextensionsfor which
FK is the generatingparentare then usedas the successor
nodesduringthe depth-firsttraversal.

The generalstructureof VSIGRAM is shown in Algo-
rithm 5. vSIGRAM startsby determiningall frequentsize-1
patternsandthen usegachoneof themasthestartingpointof
arecursve depth-firstextension(vSIGRAM-EXTEND func-
tion). VSIGRAM-EXTEND takes asinput a sizek frequent
subgraphFK andall of its embeddings\I (F¥) in G andpro-
ceedsasfollows. For eachsizek embeddingn e M(FK), it
identifiesand storesevery possiblesize{k + 1) subgraphn
g thatcontainsm. Fromthis setof subgraphsit extractsall
size{k+1) subgraphsvhicharenotisomorphicto eachother
andstoresthemin C¥*1. Then,vSIGRAM-EXTEND elimi-
natesfrom C¥+1 all thesubgraphshatdo nothave FX astheir

Algorithm 5vSIGRAM

VSIGRAM(G, MIS_type f)

T F <0

. F1  all frequentsize-1subgraphsn G

: for eachFlin F1 do

M(F1y < all embeddingsf F1

: for eachFlin F1 do

F « FUVSIGRAM-EXTEND(FL, G, f)
s return F

VSIGRAM-EXTEND(FK, G, MIS_type f)
1. F<90
2: for eachembeddingn in M(Fk) do
3 ¢kl — ¢+l qall (k + 1)-subgraphsf G containingm}
4: for eachCk*1in ck+1 do
5. if FXis notthegeneating parentof Ck+1 then
6: continue
7: computeCk+1 freqfrom M (CKk+1)
8: if cktlfreq< f then

9: continue
10:  addCktltor
11: return F

generatingparent(Lines 5-6) or areinfrequent(Lines 7-8).
Thesubgraphs remaininig Ckt1 arethe frequentsubgraphs
of size{k + 1) obtainedby anone-edge-eensionof F* and
are usedasinput for the next recursve call. The recursion
terminatesvhenCt1 = ¢, andthe depth-firstsearchback-
tracks.

In the restof this sectionwe provide additionaldetailson
how the variousoperationsare performedand describevar-
ious optimizationsthat are designedo reducevSIGRAM’s
run-time.

5.2.1 Generating Parent Identification

Theschemdhatv SIGRAM usego determinghegenerating
parentof a particularsubgraphs asfollows. Suppose size-
(k 4+ 1) frequentsubgraphF*+1 is just createdby extension
from a sizek frequentsubgraphFX. By the canonical
labeling, the orderof edgesandverticesin F¥*1 is uniquely
determined.vSIGRAM removesthe lastedgethat doesnot
disconnecF k1 andobtainsanothersizek subgraphF.

If F isisomorphicto FX then FX becomeghe generating
parentof FXt1 andvSIGRAM keepsthefurtherexploration
from FK*1, Similartypeof approachebave beenusedearlier
in the context of verticalalgorithmsfor the graph-transaction
setting [65, 68]. All of thesesharethe sameidea, which
avoids redundantfrequentpatterngenerationand traverses
thelattice of patternsasif it wasatree.

5.2.2 Efficient Subgraph Extension

Startingfrom a frequentsizek subgraphy SIGRAM obtains
the extendedsubgraph®f sizek + 1 by addinganadditional
edge(while preservingconnectvity) to all of its possibleem-
beddings. Specifically for eachembeddingm of a frequent
k-subgraphF, vSIGRAM enumeratesll the edgesthat can
be addedto m to form a size{k + 1) extendedsubgraph.
Eachof thoseedgesis representedby a tuple of 5 elements
s = (X, Y, Uu,v,e), calledastemwherex andy arethevertex
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IDs of theedgein G, u andv, u < v, arethe corresponding
vertex IDs in F, ande is thelabel of the edge.For u andv,
if thereis no correspondingertex in F, —1 is usedto shav
thatit is outsidethe subgraphF.

However, becauseof the automorphisnmof the subgraph
F, we cannot usethis stem representatiordirectly. For
a particularembeddingm of a frequentsubgraphF in G,
theremay be morethanonevertex mappingof the subgraph
onto the embedding. If we simply useda pair of vertex
IDs of the subgraphto represent stem, dependingon the
mapping, the same edge addition might be considereda
different stem, which would resultin the wrong frequeng
of the subgraph. To avoid this problem, every time a stem
is generated,ts representations normalizedas follows .
VSIGRAM enumeratesall possible automorphismsof F,
denoteddy {¢; }. By anappropriates; we obtainthecanonical
vertex ID for every vertex v € V (F). ThecanonicallD of a
vertex v, denotedby cvid(v), is definedas

cvid(v) = miin @i (v).

The automorphismwith the least subscriptthat gives the
canonicallD for v is called the canonical automorphism
denotedoy ¢;.

¢y = argrg@nqji ), i <] ifgi(w)=¢jw)

For example,giventhe size-6graphG shawvn in Figure5(a),
cvid(vz) = v1 and¢y, = ¢2. Figure5(b) shavs cvid and¢*
for every vertex in G. Note thatalthough¢s(vs) is alsovs,
becausep, hasthe smallersubscript,2, ¢;. is ¢2. Now for
eachstems = (x, y, u, v, €), ¢*(u, v) = (U, v’) aredefined
asfollows.

u' = cvid(u), v = ¢ (v)

u =¢i(u), v =-cvid)
Then,stemsisrewrittenas(x, y, u’, v/, ), whichis automor
phisminvariantrepresentationf s andis usedby vSIGRAM

to properlydeterminghefrequeny of size{k + 1) extended
subgraphs.

if cvid(u) < cvid(v)
otherwise

Additional Optimization: Keeping Track of Edge Cre-
ation Status Each frequentsubgraphmaintainsa three-
dimensionatable,calleda connectiortable. Eachelementn
thetableis denotedy ct(U’, v, €) which shawsif it is possi-
ble to form anedgebetweertheverticesu’ andv’ whoseedge
labelis e. Everytimeastem(x, y, U’, v/, e) is discardedthe

correspondinglementin the connectiontableis updatedto
shaw thatit is now impossibleto createan edgewith alabel
e betweenu’ andv’. If ct(u’, v/, e) is deactvatedfor a fre-
quentsubgraptof sizek, thenfor ary | > k, thereshouldnot
be ary frequentsubgraphhathasanedgebetweery’ andv’
with the edgelabele. We canreducethe numberof stemsto
be generatedy looking up the connectiontable during the
stemenumeratiorphase.

5.2.3 FrequencyCounting

In the vertical algorithm, when a size{k + 1) extensionis

processedhereis only onesizek frequentsubgraptvisible,

the generatingparent. vSIGRAM'’s frequeng countingis

similar to HSIGRAM-COUNT, exceptfor the computation
of fp (seeLine 15 in Algorithm 3). HSIGRAM enforces
the downward closurepropertyon the frequeng of a size-
(k + 1) candidateby usingthe leastfrequeng of all sizek

subgraph®f thecandidatev SIGRAM cannottake the same
step becausevSIGRAM doesnot hold all sizek frequent
subgraphst the time a size{k + 1) extendedsubgraphis

created.InsteadvSIGRAM simply usesthefrequengy of the
sizek generatingparentfrom which the currentsize{k + 1)

extensionis obtained. As a result, vSIGRAM’s pruningis

looserthan thatof HSIGRAM.

6 Experimental Evaluation

In this section,we study the performanceof the proposed
algorithmswith various parametersand real datasets. All
experimentswere done on dual AMD Athlon MP 1800+
(1.53GHz) machineswith 2 GBytesmain memory running
theLinux operatingsystem All therun-timesreportedarein
seconds.

6.1 Datasets

We usedsix differentdatasetseachobtained fromadifferent
domain, to evaluateand comparethe performanceof HSI-
GRAM and VSIGRAM. The basic characteristicof these
datasetare shovn in Table2. Note thateventhoughsome
of thesegraphsconsistof multiple connectedcomponents,
the HSIGRAM and vSIGRAM algorithmtreatthemasone
large graphand discover the frequentpatternsaccordingto
Definitions1-3describedn Section4.

The Aviation and Credit datasetsare obtained from[64].
The Aviation datasets originally from the Aviation Safety
ReportingSystemDatabas@ndthe Creditdatasets from the
UCI machinelearningrepository[7]. The directededgesn
the original graphdatawere corvertedinto undirectedones.
For the Aviation dataset,we removed undirectededgesto
shawv “near.to” relationbetweentwo verticesbecausehose
edgedorm cligueswhich makesthis graphdifficult to mine.

The Citation datasetwas createdfrom the citation graph
usedin KDD Cup 2003 [37]. Eachvertex in this graph
correspondgo a documentand eachedgecorrespondgo a
citation. Becauseour algorithmsare for undirectedgraphs,
thedirectionof thesecitationswasignored.Sincetheoriginal
datasetdoesnot have ary meaningfullabel for vertices,we



generatedrertex labelsasfollows. We first useda clustering
algorithmto form clustersof the documentabstractsnto 50
thematicallycoherentopics,andthen assignetheclusteriD
asthelabelto the correspondingertices. For the edgeswe
usedaslabelsthedifferencan thepublicationyearof thetwo
papers. For example,if two paperswere publishedin 1997
and 2002, an edgeis createdbetweenthosetwo document
verticeswith the label “5”. Finally, becausesome of the
verticesin the resultinggraphhad a very high degree(i.e.,
authoritiesandhubs),we keptonly theverticeswhosedegree
waslessor equalto 15.

The ContactMap datasetis madeof 170 proteins from
the Protein Data Bank [5] with pairwise sequenceadentity
lower than25%. The verticesin thesegraphscorrespondo
the differentamino acidsand the edgesconnecttwo amino
acidsif they areeitherat consecutie sequenceositionsor
they arein contactin their 3D structure.To aminoacidsare
consideredo bein contactif the distancebetweentheir C,
atomsis less thar8 A. Furthermorewhile creatingthegraphs
we only consideredhon-localcontactghataredefinedasthe
contactshetweenaminoacidswhosesequenceeparations
atleastsix aminoacids.

The DTP datasets a collection of 2,319 chemicalcom-
poundsrandomlyselectedrom the datasebf 223,644chem-
ical compoundprovidedby the Developmentall herapeutics
Program(DTP) at NationalCancernstitute’. Note thateach
chemicalcompoundormsa connecteccomponentindthere
are2,319suchcomponentén this datasetEachvertex corre-
spondgo anatomandits labelrepresentshe atomtype. An
edgeis formedbetweertwo verticesif thecorrespondingwo
atomsareconnectedy abond. Thetypeof abondis usedas
anedgelabel,andtherearethreedistinctedgelabels.

Finally, the VLSI datasetwas obtained fromthe Interna-
tional Symposiumon Physical Design’98 (ISPD98)bench-
mark suité* and correspondso the netlist of a real circuit.
The netlistwascorvertedinto a graphby first removing ary
netsthatarelongerthanfour andthenusinga starbasedap-
proachto replaceeachnet(i.e., hyperedgeby a setof edges.
Note thaffor this datasetve limited thesizeof thelargestdis-
coveredpatternto five edges.This is becausdor the values
of thefrequeng thresholdusedin our experimentsthe only
frequentpatternsthat containedmore than five edgeswere
paths,andbecausef the highly connectechatureof the un-
derlyinggraph,therewereavery lagenumberof suchpaths,
makingit hardto find thesdongerpathpatternsn reasonable
amountof time.

6.2 Results

Table 3 shaws the resultsobtainedby the HSIGRAM and
VSIGRAM algorithmsfor the differentdatasetsfor a wide
rangeof the minimumfrequeng thresholdvaluesf, andthe
threedifferentMIS-basedoroblemdefinitions. For eachex-
periment,Table3 shavs the amountof time (in seconds)e-

3DTP 2D and 3D Structural Information. http://dtp.nci.nih.ge/docs/
3d.database/structuramformation/structuratiata.htmi
4http://visicad.cs.ucla.edutheese/ispd98.html

Table2: Datasetsisedin the experiments

Dataset Connected  Vertices  Edges Labels
Components Vertex  Edge
Aviation 2703 101185 196964 6173 51
Credit 700 14700 28000 59 20
Citation 16999 29014 42064 50 12
ContactMap 170 33443 224488 21 2
DTP 2319 41190 86140 58 3
VLSI 2633 12752 23084 23 1

quired by the particularalgorithm, the total numberof pat-
ternsthat were discovered, and size of the largestpattern.
Entriesin thetablemarkedwith “—" representgxperiments
that were abortedbecauseof high computationalrequire-
ments.

From theseresultswe can seethat as expected,for all
dataset@ndalgorithms,asthevalueof f decreasegherun-
time for finding the frequentpatternsncreasesaswell. The
rateof increasdn runtimefollows the correspondingate of
increasean the numberof patternghatarebeingdiscovered.
Besideghat,theresultsin thistablehelpillustratetherelation
betweenthe two key variablesin theseexperiments,which
arethe type of the particularalgorithm (HSIGRAM vs v SI-
GRAM) andthe type of frequeng calculation(approximate
MIS, exactMIS, or upperboundMIS).

In generalthe amountof time requiredby vSIGRAM is
smallerthan thatrequiredby HSIGRAM. In fact,asthevalue
of thefrequeng thresholddecreases;SIGRAM is upto five
timesfasterthanHSIGRAM. This is true acrossall datasets
for theapproximateandexactMIS problemformulation,and
for thosedataset$or whichtheupperboundMIS formulation
leadsto the same number of frequent patternsfor both
algorithms. As discussedn Section5.2, the reasonfor that
performanceadwantageis the fact that by keepingtrack the
embeddingof the frequentsubgraphslong the depth-first
path, VSIGRAM spendssignificantly lesstime in subgraph
isomorphisnrelatedcomputationdshanHSIGRAM does.

However, for certaindatasetswhenthe upperboundMIS
formulationis used,vSIGRAM endsup generatingsignifi-
cantlymorepatternghanthosegeneratedy HSIGRAM. For
example,in the caseof the DTP datasetand f = 20, vSI-
GRAM generateslmost16 times more patternsthan HSI-
GRAM. In suchcasesthe amountof time requiredby v Si-
GRAM is substantiallygreaterthan thatrequiredby HSI-
GRAM (32.4timesgreaterin the DTP example). The rea-
sonfor thatis the fact that becauseof its depth-firstnature,
VSIGRAM cannottake advantageof the frequentsubgraph
lattice to geta tight upperboundon the frequeng of a sub-
graph basedn the frequeng of all of its subgraphsandit
basedts upperboundonly onthe frequeng of the generat-
ing parent. On the otherhand,becauseof its level-by-level
nature,HSIGRAM canusethe informationfrom all its sub-
patterns,and obtainsbetterupperbounds(seediscussionn
Section5.1.2).

ComparinghedifferentMIS-basedroblemformulations,
we canseethatthe onebasedon the approximateMIS usu-
ally leadsto the fastestexecutiontime for both algorithms.
Moreover, for datasetdor which the variousoverlapgraphs



Table3: Run-timein secondsandthe numberof found frequentpatterndfor the differentdatasetsthis is thatandthatis this
andit is whatandwhatisit.

Aviation Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H V H V H \Y H \Y H \Y H \Y H V| H V| H \Y
2000 | 308 130[ 306 130 320 130 833 833 833 833 833 833 8 8| 8 8| 8 8
1750 | 779 342| 787 342| 789 341 2249 2249 2249 2249 2249 22490 9 9| 9 9| 9 9
1500 | 1603 743| 1674 745| 1584 739| 5207 5207 5207 5207| 5207 5207 10 10| 10 10| 10 10
1250 | 2726 1461| 2720 1496| 2781 1486/ 11087 11087 11087 11087 11087 11087 12 12| 12 12| 12 12
1000 | 5256 3667| 5158 3683| 5596 3818 30331 30331 30331 30331 30331 30331 13 13| 13 13| 13 13
Citation Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H V H V H \Y H \Y H \Y H \Y H V| H V| H \Y
100 0.1 00 01 0.0 01 00 6 6 6 6 7 17 1 1] 1 1| 2 5
50 01 01, 01 01| 06 — 39 39 39 39 113 —| 2 2| 2 2| 7 —
20 0.6 03/ 09 05/ 139 — 266 266 266 266 12203 —| 3 3| 3 3|16 —
10 40 15| 42 19| — — 986 986 988 988 — —| 5 5| 5 5| — —
Contact Run-time[sec] Numberof FoundPatterns LargestPatternSize
Map f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact UB
H V H V H \ H \Y H \Y H \ H V| H V| H \Y
400 3 2 3 2 10 — 100 100 100 100 246 — 1 2 2] 2 2] 8 —
300 10 3| 10 3| 183 — 186 186 186 186| 2358 —| 2 2| 2 2|10 —
200 44 9| 45 9| — — 505 505 505 505 — —| 3 3| 3 3| — —
100 | 362 63| 356 71| — — 3183 3183 3186 3186 — —| 5 5| 5 5| — —
50 | 3505 607| 3532 632] — — | 29237 29237 29298 29298 — —| 6 6| 6 6| — —
Credit Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H V H V H \ H \ H \Y H \ H V| H V| H \Y
500 0 0 0 0 0 0 24 24 24 24 24 243 3] 3 3] 3 3
200 10 4| 10 4 9 4 1325 1325 1325 1325 1325 1325 7 7| 7 7| 7 7
100 49 20| 45 21| 45 20| 11696 11696 11696 11696 11696 1169 9 9| 9 9| 9 9
50 | 169 78| 172 80| 169 78| 73992 73992 73992 73992 73992 73997 11 11| 11 11| 11 11
20 | 2019 461| 1855 468| 1880 462| 613884 613884 613884 613884 613884 613884 13 13| 13 13| 13 13
DTP Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H V H V H \ H \ H \ H \ H V| H V| H \Y
500 92 20| 86 2I] 96 30 109 109 109 109 153 226 7 7| 7 7|12 13
200 | 101 23| 100 24| 115 38 414 414 415 415 641 916/ 9 9| 9 9| 15 15
100 | 113 27| 114 27| 169 64| 1244 1244 1244 1244] 2484 3788 12 12| 12 12| 16 18
50 | 145 34| 134 35| 247 103| 4028 4028 4028 4028 8295 13622 14 14| 14 14| 18 21
20 | 243 86| 249 83| 616 19998 21477 21477 21478 21478 52180 824704 16 16| 16 16| 20 81
10 | 813 311| 882 294| 2018 — | 112535 112534 112539 112539 232810 — |21 21|21 21| 21 —
VLSI Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H V H V H \ H \ H Vv H \ H V| H V| H \Y
200 11 3 — — 37 8 137 137 — — 347 415 5 5| — —[ 5 5
150 13 4] — — 46 9 156 156 — — 437 503 5 5| — —| 5 5
100 42 70 — — 54 10 379 379 — — 519 609) 5 5| — —| 5 5
75 49 8| — — 56 10 409 409 — — 571 679 5 5| — —| 5 5
50 | 236 15| — —| 282 17 683 683 — — 946 1051 5 5| — —| 5 5
25 | 428 18] — —| 469 20| 1452 1452 — — 1907 2131 5 5| — —| 5 5

Note. Dashesndicatethe computationwvasabortedbecausef thetoo long run-timeor memoryexhaustion.
f: theminimumfrequeng thresholdH: HSIGRAM, V: vSIGRAM, Approx.: with approximateM|S, Exact: with exactMIS, UB: with upperboundMIS

arereasonablysmall (this is true for all our datasetsxcept

VLSI), the exact MIS-basedformulationleadsto small exe- Table4: SUBDUEResults

cutiontime aswell. Also, the upperboundMIS formulation Dataset ‘ Rtfn-ti;ne N;;i:tberof Pgt_tem ‘ Firqugarlstzof
. . - sec erns ize un erns

tendsto be slower than the othertwo primarily becausat Aviaton — T = — = — —
generatesnore patterns.However, the advantageof the up- Citation 8812 3|27 26 271 1 1 1
. ContactMap 5043 3| 224 223 223 1 1 1
per boundformulationover the one ba}sedon the exgctMIS Credit 517 3176 5 85| 341 395 387
canbeseenfor the VLSI graphfor which the resultingover- DTP 1525 3| 2 2 6]4957 4807 1950
VLSI 16 3 1 1 1| 773 773 244

lap graphwaslarge, andexact MIS computationsould not
finish in reasonabl@amountof time. Finally, comparingthe
numberof patternsfound by the approximateandthe exact
MIS-basedormulations we canseethat,in generaltheap- ~ Comparisonwith SUBDUE We ran SUBDUE[28] version
proximatealgorithmfails to discover a very smalinumberof ~ 5.0.6 on the samedatasetsdescribedin Section6.1 and
patterns.

6.3 PerformanceComparisonwith Existing Algorithms

5Although this versionis not the latestone, it runs significantly faster

thanthecurrentlatestversion,5.0.8.



measuredhe run-time, the numberof discovered patterns,
their size, and their frequeng. Theseresultsare shawvn in
Table 4. Theseresultswere obtainedby using SUBDUE’s
default settingsfor all but the VLSI dataset. For the VLSI
dataset,we run SUBDUE so that to find subgraphsthat
contain at most five edges, as was done in the case of
HSIGRAM and vSIGRAM. Note that SUBDUE's default
settingsreturnsat mostthreesubgraphshatweredetermined
to bethe mostimportant.

Becaus®f theinherendifferencedbetweerSUBDUEand
our algorithmsi,it is impossibleto performa direct compari-
sonof theresultsthatthey generateFor this reasorour com-
parisonswill focusmostly on highlighting somekey points.
First, the amountof time requiredby SUBDUE is in gen-
eral,considerably highahan tharequiredby ouralgorithms.
For example,SUBDUEdid notfinishthecomputatiorfor the
Aviation datasetfterspendingour entiredays. Also for the
Citation andContactMap datasetsSUBDUE could not find
ary meaningfulpatternsat all, asthe patternsthatit found
hada frequeng of one. For the Creditdatasetvith the min-
imum frequeng thresholdof 50, both HSIGRAM andv Si-
GRAM with upperboundMIS spentl169and78 secondse-
spectvely to discover the samenumberof subgraphsy3992.
Thelargestpatternhasl1edgesand hadafrequeng of 58. In
contrastthelargestpatternfoundby SUBDUEhadsix edges
with afrequeng of 341. Thisindicatesthatif therearesmall
subgraphshathave relatively high frequengy, SUBDUEwill
focuson themandwill not discover the largerpatterns.We
can seethe similar resultfor the DTP dataset. The size of
the patternsSUBDUE found are very small, 2—6 edges but
their frequeng is very high. On the otherhand,the results
in Table3 showv thatwith the minimum frequeng threshold
20, bothHSIGRAM andvSIGRAM underexactMIS spend
249and83 secondsespectiely to find 21,478frequentsub-
graphsandthelargestsizeis 16.

Comparison with SEuS The SEuS[21] algorithm is de-
signedto find all frequentsubgraphsn a single-graphset-
ting. However, when determiningthe frequeng of a sub-
graphthey considerall embeddingsrrespectve of whether
they aredisjointor not. As aresult,asubgrapimayhave high
frequeng eventhoughit hassmall numberof edge-disjoint
embeddingdecausef overlappedembeddingsin [21], the
run-time of SEuSon the PTE chemicaldatasét is reported.
SEUS(SEuS-S1kpentmorethan20 secondgo find 34 fre-
quentsubgraphsthatis 1.4 frequentsubgraphger second.
On the samedatasetgiven the minimum frequeny thresh-
old of 500, vSIGRAM with upperboundMIS requires20
secondgo find 168 frequentsubgraphswhich translateso
8.4frequentsubgraphgersecond Similarly, with the Credit
datasefwhich is called “Credit-4" in [20]), SEuS-Slspent
50 seconddo produce48 frequentsubgraphgone frequent
subgraphgper second)while vSIGRAM with upperbound
MIS finds 1,325frequentsubgraphsn four seconddgor the
minimum frequeng threshold200 (331 frequentsubgraphs

6ftp://ftp.comlabox.ac.uk/pub/Rckages/lLP/Datasets/carcinogenesis/
progol/carcinogenesis.tar

persecond).

7 Conclusions

In this paperwe addressedhe problem of finding all the

subgraphsthat have mary edge-disjointembeddingsin a

large sparsegraph, a step critical to discovering patterns
in graph datasets. We studied three distinct formulations
of the problem that were motivated by the compleity of

identifying the maximumsetof edge-disjoinembedding®f

a subgraph,and developedtwo frequentsubgraphmining

algorithmsfor solving them. Thesealgorithmsare based
on the horizontaland vertical paradigmsyespectiely. Our

experimentalevaluationon mary real datasetshoved that
for mostdataset@and problemformulationsboth algorithms
achieve goodperformancewith the vertical algorithmbeing
two-to-five timesfaster
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